Evaluation of the swirl characteristics of a tidal stream turbine wake
نویسندگان
چکیده
Tidal stream turbines (TSTs) produce a rotating downstream wake. This paper describes the characteristics of the swirl flow in the wake of a TST with a view of comparing these against classical swirl theory and investigating whether swirl is an important factor in wake recovery prediction. Using computational fluid dynamics the paper describes the characteristics of velocities, pressure drop, viscosity and swirl number of 2, 3 and 4 bladed TSTs. To provide confidence in the results the characteristics are compared to the findings in the literature for a set of generic swirl generators. The swirl numbers for the TSTs in a 3.08 m/s tidal (plug) flow were found to be between 0.14 and 0.28, which describes a weak or very weak swirl flow. Whilst the characteristics are in agreement with theory it also means that the swirl component of the wake is not coupled with the axial component and cannot be used to estimate the wake length. However, peak swirl number for the 4 bladed turbine is close to the threshold of 0.3 at which axial velocity starts to become coupled with tangential velocity and therefore wake recovery may be related to S for some turbine designs. 2015 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY license (http://creativecommons.org/ licenses/by/4.0/).
منابع مشابه
Experimental Analysis and Evaluation of the Numerical Prediction of Wake Characteristics of Tidal Stream Turbine
It is important to understand tidal stream turbine performance and flow field, if tidal energy is to advance. The operating condition of a tidal stream turbine with a supporting structure has a significant impact on its performance and wake recovery. The aim of this work is to provide an understanding of turbine submerged depth that governs the downstream wake structure and its recovery to the ...
متن کاملDesign and testing of a contra-rotating tidal current turbine
A contra-rotating marine current turbine has a number of attractive features: near-zero reactive torque on the support structure, near-zero swirl in the wake, and high relative interrotor rotational speeds. Modified blade element modelling theory has been used to design and predict the characteristics of such a turbine, and a model turbine and test rig have been constructed. Tests in a towing t...
متن کاملA semi-analytical model for velocity profile at wind turbine wake using blade element momentum
The shape of wake behind a wind turbine is normally assumed to have a hat shape for the models used in wind farm layout optimization purposes; however, it is know from experimental tests and numerical simulations that this is not a real assumption. In reality, the results of actual measurements and detailed numerical simulation show that the velocity in wake region has a S-shape profile. The pr...
متن کاملA semi-analytical model for velocity profile at wind turbine wake using blade element momentum
The shape of wake behind a wind turbine is normally assumed to have a hat shape for the models used in wind farm layout optimization purposes; however, it is know from experimental tests and numerical simulations that this is not a real assumption. In reality, the results of actual measurements and detailed numerical simulation show that the velocity in wake region has a S-shape profile. Th...
متن کاملThe Influence of Solidity on the Performance Characteristics of a Tidal Stream Turbine
The performance characteristics of a tidal stream turbine are critical when assessing its economical viability. The solidity of the rotor, which is a function of the blade chord length and the number of blades, will affect the performance characteristics, from both a power output and a structural
متن کامل